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Abstract

The postbuckling response of shells is known to exhibit complex phenomena including mode switching and interac-
tion, particularly in the advanced postbuckling range. The existing literature contains many initial postbuckling anal-
yses as well as advanced postbuckling analyses for a single buckling mode, but little work is available on the advanced
postbuckling analysis of shells of revolution considering mode switching and interaction. In this paper, a numerical
method for the advanced postbuckling analysis of thin shells of revolution subject to torsionless axisymmetric loads
is presented, in which such mode switching and interaction are properly captured. Numerical results obtained using
the present method for several typical problems not only demonstrate the capability of the method, but also lead to
significant observations concerning the postbuckling behavior of thin shells of revolution. In particular, the results show
that strong interaction between different harmonic modes may exist and the transition of deformation mode from one
to another is gradual. Consequently, the conventional approach of finding the postbuckling path of a shell as the lower
festoon curve of postbuckling paths of individual harmonic modes is not valid and is at best a convenient
approximation.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Axisymmetric shells are widely used in many engineering fields. Examples include aircraft, spacecraft,
submarines, nuclear reactors, cooling towers, storage silos and tanks, roof domes, offshore platforms,
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tubular towers, chimneys, pressure vessels and pipelines. A perfect shell of revolution under axisymmetric
loads may bifurcate into a non-symmetric mode at a suitable level of loading. The load carrying capacity of
a corresponding real shell depends not only on the bifurcation load, but also on the nature of the post-
bifurcation path, which determines the sensitivity of the shell to initial geometric imperfections. As a result,
the postbuckling behavior of perfect shells has been of enormous interest to shell stability researchers and
designers. Nevertheless, postbuckling analysis of perfect shells has been and still remains a challenge to
numerical analysts, because the postbuckling behavior of perfect shells may be highly unstable and very
complicated, and may involve complex mode switching and interaction. It should be noted that some of
the difficulties encountered in the postbuckling analysis of perfect shells abate or disappear when significant
geometric imperfections of a suitable form are included in the analysis. In this sense, an analysis of the post-
buckling behavior of perfect shells is more challenging than a nonlinear analysis of imperfect shells for
which the phenomena of bifurcation and mode switching are likely to be eroded by the presence of signif-
icant geometric imperfections. This paper is concerned only with perfect shells, whose postbuckling behav-
ior is important in its own right and for a proper understanding of the sensitivity of the shell to geometric
imperfections.

The existing literature on postbuckling behavior contains many initial postbuckling analyses (e.g.
Budiansky and Hutchinson, 1966; Koiter, 1945). A number of researchers have also implemented the gen-
eral theory of initial postbuckling in finite element analyses of axisymmetric shells (e.g. Azrar et al., 1993;
Endou et al., 1976; Flores and Godoy, 1992, 1993). However, these studies were able to predict only the
initial part of the postbuckling path. Rigorous analytical studies (e.g. Esslinger and Geier, 1975; Shen,
1996; Shen and Chen, 1991; Yamaki, 1984) have also examined advanced postbuckling responses, but these
analyses were concerned with postbuckling deformations in a single buckling mode, so mode switching and
interaction were not considered. More recently, Bulenda (1993) presented a harmonic-by-harmonic finite
element method to compute the postbuckling path of a cylindrical shell under uniform external pressure,
but mode switching was again not considered. Similarly, Combescure’s (1999) results for the postbuckling
of an elastic—plastic shell with significant imperfections under external pressure were not concerned with
mode switching. He did not observe any mode change in his static results, but noticed such a change in
his dynamic results and attributed this to inertial effects. The best investigation so far appears to be that
by Kato et al. (1997) who studied the secondary postbuckling behavior and mode interaction in spherical
caps under uniform external pressure. Although secondary bifurcation was considered in their study by
monitoring the eigenvalue of a chosen secondary bifurcation mode, the choice of this mode appears to
be arbitrary apart from the exclusion of those describing the primary post-bifurcation path. As a result,
mode switching was not properly captured. Only spherical caps with the first and second bifurcation points
being almost coincidental were studied, so the capability of the method for other situations is not clear.

The modelling of mode switching is very challenging, and there have been a number of recent attempts
using general shell elements either employing a static approach or a dynamic approach (Choong and
Ramm, 1998; Guggenberger, 1996; Kusher, 1997; Riks et al., 1996). These studies are still exploratory, with
only limited successes. There appears to have been no previous study using axisymmetric shell elements
which properly modelled the advanced postbuckling deformation process of perfect elastic shells of revo-
lution involving continuous mode switching and interaction.

In this paper, a numerical method for the advanced postbuckling analysis of elastic shells of revolution
subject to torsionless axisymmetric loads is presented, based on the general formulation for nonlinear
non-symmetric deformations of shells of revolution presented in Hong and Teng (2002). The method is
based on the use of small load-disturbances in a nonlinear analysis of shells of revolution under general
non-symmetric loads, and is referred to as the load-disturbance method. By specifying small load-distur-
bances in appropriate harmonic modes, complex postbuckling paths with mode switching and interaction
can be predicted. Numerical results of a number of typical problems solved using this method are presented
to demonstrate its accuracy and capability.
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2. Nonlinear equations of postbuckled shells
2.1. Displacements of postbuckled shells

The isoparametric doubly curved thin shell element used in the present finite element formulation is
shown in Fig. 1. The accuracy of the element has been demonstrated in many successful applications (Hong
and Teng, 2002; Teng and Rotter, 1989a,b). The element geometry is described in cylindrical coordinates
and is uniquely defined by the radius R, the axial coordinate z and the element meridional curvature de/ds
at the nodal points. The intermediate values of coordinates R, z, and d¢p/ds of the shell element are inter-
polated in terms of the nodal coordinates using cubic Hermitian functions. The nodal displacements in glo-
bal coordinates are taken as u;, (du/ds); v; (dv/ds);, w; and (dw/ds); at the two nodes of the element
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Fig. 1. The doubly curved axisymmetric shell element. (a) Local and global displacements. (b) Geometry of an element. (c)
Displacements within the element. (d) Nodal displacements.
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(Fig. 1d). The displacements at any point, defined in the global coordinate system, u, v and w (Fig. 1c) are
interpolated between the nodal points in terms of the nodal values also using cubic Hermitian functions.
The set of global displacements u, v and w at any point is related by a transformation matrix [7] to the local
displacements #, v and w (in curvilinear coordinates) (Teng and Rotter, 1989a).

For a shell of revolution subject to torsionless axisymmetric loads, pre-buckling displacements are axi-
symmetric. The postbuckling displacements differ from the pre-buckling displacements in that they include
both axisymmetric components iy, vy and wy and non-axisymmetric components u;cosn,;0, v;sinn,0 and w;-
cosn;f). If several buckling modes correspond to similar buckling loads such that all these non-symmetric
modes are involved in postbuckling deformations, these modes are said to interact in the postbuckling pro-
cess and should be included in an accurate postbuckling analysis. In addition, due to the nonlinear coupling
effects between these buckling modes, deformations in additional harmonic modes arise during the post-
buckling process. For a detailed treatment of the nonlinear coupling effects and particularly the determina-
tion of harmonic modes from nonlinear coupling, readers are referred to Hong and Teng (2002). The
postbuckling displacements including interacting buckling modes as well as additional deformation modes
due to nonlinear coupling are described by

N
u=up+ Zuicosn,ﬁ
i=1
N
U:vo—l—ZvisinniO (1)
i=1

w; cos n;0
1

N
w=wy+

l

in which 0 is the circumferential angular coordinate, &V is the number of the involved buckling modes and »;
is the harmonic number or wave number of the ith harmonic mode which is referred to as harmonic mode
n;.

2.2. Nodal variables

For postbuckling displacements defined by Eq. (1), the vector of nodal variables for each element is

{6}, = {00,101y ..., 0n}" (2a)

in which

. . . . . . T
;oo\ o\ fow\' , fou\' ; [ov\' . [ow\'
" { (@), (), (&), (5, (5) (EL} 20

where dy denotes the axisymmetric terms and §; (i = 1,...,N) denotes the non-axisymmetric terms of the ith
harmonic, and the subscripts 1 and 2 are the nodal point numbers of the element.
If the postbuckling analysis is carried out assuming that only one non-symmetric mode is involved, the
postbuckling displacements (Eq. (1)) reduce to
u = ug + u, cosn
v =1y + v, sinnd (3)
w = wy + w, cosnf

in which 7 is the wave number of the bifurcation buckling mode or any other chosen mode. Therefore, the
vector of nodal variables for each element is
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in which the subscript 0 denotes axisymmetric deformations and the subscript n denotes non-symmetric
deformations in harmonic mode 7.

The postbuckling path determined considering the coupling and/or interaction of a number of harmonic
modes is referred to as the postbuckling path for harmonic modes ny + n, + - - - + n;+ - - - + ny or simply for
n=mn;+ny,+---+n+---+ ny The plus sign is thus used to mean that these modes are coupled or inter-
act in the analysis. When only a single harmonic mode #; is considered, the predicted postbuckling path is
referred to as the postbuckling path for harmonic mode #; or simply for n = n;. It should be noted that axi-
symmetric displacements are generally present during postbuckling deformations, although this is not
explicitly stated in the terminology suggested above.

2.3. Governing nonlinear equations

The equations governing the nonlinear deformations of shells of revolution under non-symmetric loads
(Hong and Teng, 2002) can be specialized for the non-symmetric deformations of postbuckled shells with
the nodal variables defined by Eq. (2). The total Lagrangian approach is adopted here in which all the
quantities are referred to the undeformed configuration. The application of the principle of virtual displace-
ments leads to a set of nonlinear equations for the finite element model of a given structure which may be
represented by

(@O} ={r}- > [ (zrar =0 (5

element

in which {4} is the vector of nodal displacement variables, {F} is the vector of equivalent nodal forces due
to body forces and surface tractions, [B] is the incremental strain—displacement matrix based on the non-
linear shell theory of Rotter and Jumikis (1988) for thin shells of revolution which is a special case of the
general nonlinear thin shell theory of Teng and Hong (1998), {X} is the vector of generalized stress resul-
tants and {®(0)} is a vector of nodal residual forces. For each iteration, the nodal displacement increments
for the structure {Ad} are obtained by solving the following linearised system of equations

{®(0)} = [Krl{Ad} (6)

where [Kt] is termed the global tangent stiffness matrix. The tangent stiffness matrix for each element is
given by

Kt = [K], + [Ko], (7

where [K]. is the stiffness matrix including the effect of changes in geometry, and [K,]. accounts for the effect
of internal stresses. These two matrices [K]. and [K,]. are given in Hong and Teng (2002).

The element tangent stiffness matrices [Kt]. (Eq. (7)) are condensed to reduce the inter-element discon-
tinuity in a way similar to that described in Teng and Rotter (1989a). The tangent stiffness matrix for the
structure [Kt] may then be found by assembling the condensed element tangent stiffness matrices. After the
condensed displacement vector is determined, the complete set of nodal displacements can be recovered.
This condensation and recovery procedure is necessary for the analysis to be applicable to segmented or
branched shells featuring slope discontinuities.
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3. The load-disturbance method

3.1. General

It is well known that for many shells, the deformation mode changes during the postbuckling process.
This phenomenon is often referred to as mode switching or mode jumping (e.g. Riks et al., 1996; Stein,
1959; Supple, 1970). Mode switching is associated with re-bifurcation (secondary or higher order bifurca-
tion points) along the path of deformation, and is a challenge to numerical analysts (e.g. Choong and
Ramm, 1998; Kheyrkhahan and Peck, 1999; Kusher, 1997; Riks et al., 1996). For shells of revolution,
re-bifurcation is characterized by the appearance of additional harmonic modes. These additional modes
are generally different from those from nonlinear coupling, so they do not appear automatically. In order
for postbuckling mode changes to be followed, it is necessary to disturb the shell into these additional
modes.

A method for postbuckling analysis is thus presented here, which has the ability to follow postbuckling
paths involving mode switching. In this method, a postbuckling analysis is converted into a conventional
nonlinear analysis by including small loads of appropriate distributions in the analysis. This method is
called the load-disturbance method. The load-disturbance concept is not new. For example, Chan and
Trbojevic (1977) used the load-disturbance method to determine buckling loads using a nonlinear analysis.
A difficulty with the load-disturbance method in general for postbuckling analysis is that the specification
of load-disturbances of a particular form of distribution which can guide the structure into the lowest post-
buckling path or a controlled deformation mode may not be straightforward. More specifically, if general
shell elements are used to model a perfect shell of revolution without the imposition of additional con-
straints, the shell with very small pre-defined load-disturbances are subject to the influence of accumulated
random or systematic errors and its postbuckling deformation mode cannot be controlled to understand
more switching and interaction. For example, for a general shell element, when small loads in a number
of pre-defined harmonic modes need to be applied, the summation of these harmonic loads is represented
with approximation errors as equivalent nodal loads. As a result, systemic approximation errors are intro-
duced which can introduce extra harmonic modes into the deformations of the shell. This difficulty auto-
matically disappears when a semi-analytical coupled-harmonics formulation (Hong and Teng, 2002) for
the nonlinear non-symmetric deformation of shells of revolution is applied to the postbuckling analysis
of axisymmetrically loaded shells of revolution as deformations are described by a set of pre-defined har-
monic modes. Disturbances can be easily included in all harmonics which are likely candidates for post-
buckling deformations. This leads to a simple and effective approach for tracing complex postbuckling
paths involving mode switching, a phenomenon which is very difficult to capture using general shell ele-
ments. However, no previous study appears to have combined the load-disturbance method with a
semi-analytical nonlinear analysis of shells of revolution to model postbuckling mode switching as pre-
sented here. It should be noted that a semi-analytical formulation for shells of revolution based on the
pseudo-load method (e.g. Wunderlich et al., 1985, 1989) cannot be applied with the load-disturbance meth-
od for postbuckling analysis, as the pseudo-load treatment prevents the analysis from following any unsta-
ble postbuckling path.

While mode switching has been quite widely documented in the existing literature, there has been little
information on mode interaction. Almost all previous researchers have assumed, often implicitly, that
mode switching from one to another occurs suddenly, and this assumption is behind the approach of estab-
lishing the actual postbuckling path by drawing a lower bound festoon curve to the postbuckling curves of
several deformation modes (e.g. Esslinger and Geier, 1975; Schmidt et al., 1998). In fact, significant inter-
action between different modes exists, and this lower bound approach is invalid. This aspect is illustrated in
the numerical examples described below.
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3.2. Specification of load-disturbance

In the load-disturbance method, small non-symmetric loads in N selected harmonics are added to the
axisymmetric loads to guide the shell into the postbuckling path. For any given external load component
F (distributed forces in the normal, circumferential and meridional directions or concentrated forces in the
radial, circumferential and axial directions and concentrated meridional moment), the total value of the
component is

N
F=Fy+ Y (&Fqcosn0) (8)

in which Fj is the actual value of this load component and is axisymmetric, #; is the harmonic number of the
ith mode, ¢; is the disturbance factor for harmonic mode r; and the value of ¢; is usually set to be less than
1074,

To trace the postbuckling path with the shell deforming in a single chosen harmonic mode, the external
loads (Eq. (8)) are given by

F =Fy+ Fycosnl 9)

With these applied loads, the axisymmetric analysis problem is converted into a non-symmetric analysis
problem. The nonlinear finite element formulation described in Hong and Teng (2002) can be used directly
for postbuckling analysis using the load-disturbance method. Before the applied load reaches the bifurca-
tion load, the shell follows the axisymmetric pre-buckling path. Because the value of ¢ is generally set to be
less than 10~*, the influence on the pre-buckling deformations of the small non-symmetric loads is usually
very small. When the applied load approaches the bifurcation load, the solution will continue to the post-
buckling path. Many numerical examples are given later to demonstrate the validity of this approach.

3.3. Handling postbuckling mode switching and interaction

It is generally believed that mode switching of shells leads to reductions in the number of waves (e.g.
Kato et al., 1997). Based on this information, a postbuckling analysis including the critical mode .. and
a number of lower modes n. — 1, n., — 2, etc. is suitable for tracing the postbuckling path considering
mode switching. To explain more clearly how postbuckling mode switching and interaction are modelled
using the load-disturbance method, a postbuckling analysis retaining only two non-symmetric terms in
Eq. (8) may be considered. The first one is the critical harmonic mode # (or any other mode if so desired)
with the second being the harmonic mode n — 1. Then, Eq. (8) can be written as

F=Fy+ ¢, Focosnf+ &, (Focos(n—1)6 (10)

in which the values of &, and &,,_; are usually set to be less than 10~*. As has been shown in Hong and Teng
(2002), nonlinear coupling has only a limited influence in many cases, particularly in the early stage of post-
buckling deformations. The higher modes 2n and 3n for harmonic mode » from nonlinear coupling, and
higher modes 2(n — 1) and 3(n — 1) for harmonic #n — 1 from nonlinear coupling are therefore not included
in the analysis as the objective here is to investigate mode switching and interaction along the postbuckling
path. However, harmonic mode 1 due to nonlinear coupling between harmonic modes #» and n — 1 needs to
be retained in the analysis for some problems, in order to achieve more rapid convergence to equilibrium
states. No disturbance needs to be included in harmonic mode 1 as non-zero displacements in this mode
appear naturally from nonlinear coupling (Hong and Teng, 2002).

With the applied loads given by Eq. (10), the postbuckling path can continue to the secondary post-
bifurcation path following a mode change. The value of &,_; is usually less than 10~%, and such a small
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value ensures that the shell is guided into the secondary bifurcation path or mode interaction without
introducing undesirable influence on the primary bifurcation path. Several numerical examples are pre-
sented below to demonstrate the validity and capability of the present method.

4. Numerical examples
4.1. General

The load-disturbance method of postbuckling analysis presented above was coded into the CHASH pro-
gram (Hong and Teng, 2002). The computer program was then applied to study the postbuckling behavior
of a number of typical problems. All results presented in this paper were obtained with & = 107" for the
load-disturbances unless otherwise specified. Where higher modes (modes 2n, 3n, etc.) due to nonlinear cou-
pling are considered, the values of ¢ were set to be 0 for these higher modes as non-zero displacements in
these modes arise naturally during the analysis. In the present study, the peak load or the load at which the
buckling mode starts to grow is referred to as the buckling load for appropriate differentiation from “the
bifurcation load” which is reserved for the precise bifurcation load from a non-symmetric bifurcation
analysis using the NEPAS program (Teng and Rotter, 1989b). In this terminology, the buckling load is
slightly below the bifurcation load due to the influence of small non-symmetric load disturbances. All
three-dimensional deformed shapes are plotted using normal displacements only.

The arc-length method (Crisfield, 1981; Ramm, 1981; Riks, 1979) was included in the CHASH program
(Hong and Teng, 2002) for nonlinear analysis. It should be noted that even with the arc-length method,
difficulty in convergence may be encountered in the vicinity of a bifurcation point around which the
load—displacement curve features a sharp turn. Reductions in the load step size are generally required in
such situations. While in the present study, user intervention was used when necessary, an automated pro-
cedure is probably more desirable. This aspect is however beyond the scope of the present study and not
further discussed.

4.2. Spherical cap under uniform pressure

The postbuckling analysis of a clamped spherical cap under uniform external pressure which was studied
by Kato et al. (1997) is considered here. The cap has a rise parameter A = 7, which is defined by

2=2{31— ) JH]/t (11)

The results presented in Fig. 2 are all for a Poisson’s ratio v = 0.3, with the vertical axis being the load
normalized by the classical buckling pressure of a corresponding spherical shell under uniform pressure
which is defined by

2Ef

TNEETa] (12

qCI' =
Fig. 2a shows the postbuckling path of the cap predicted by the present method for harmonic mode 3 with
two higher harmonic modes (6 and 9) due to nonlinear coupling taken into account. This predicted path is
seen to be in close agreement with that of Kato et al. (1997), showing that the present method produces
accurate results.

Fig. 2b compares the multi-mode postbuckling path for n =1+ 2 + 3 with the postbuckling paths for
individual harmonic modes, in which the horizontal axis is the vertical displacement normalized by the shell
thickness at a point with its circumferential angular coordinate § = 0 and the radial coordinate r = 0.5r,
where ry is the base radius of the cap. The multi-mode curve does not follow the lower bound of the
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postbuckling curves for the individual harmonic modes, showing that strong interaction exists between the
three harmonic modes. Only in the early postbuckling stage does the multi-mode curve follow the path for
harmonic mode 3 and then that for harmonic mode 2 briefly. Even here, it is surprising to see that the multi-
mode path switches to the higher path for harmonic mode 2 instead of continuing along the lower path for
harmonic mode 3 until it intersects the path for harmonic mode 2. The path for harmonic mode 1 is much
lower than those for both harmonic modes 2 and 3 in most of the deformation range considered here, but
the multi-mode path does not reach the path for harmonic mode 1 even though harmonic mode 1 becomes
important in the late stage of postbuckling deformations. Deformed circumferences for three points (A, B
and C) along the multi-mode path are plotted in Fig. 2c—e. In these figures, a suitably positioned reference
circle (dashed line) is plotted to show the circumferential waves more clearly. Three circumferential waves
are found in the deformations at point A (Fig. 2¢). With further deformations, re-bifurcation occurs and the
predominant harmonic mode gradually changes. The deformations of the spherical cap at the secondary
postbuckling state B (Fig. 2d) show this change, where the number of the predominant circumferential
waves is two. At point C, one circumferential wave is clearly seen (Fig. 2e). The changes in the number
of circumferential waves from 3, to 2 and then 1 are gradual.

The postbuckling path for n =1+ 2 is shown in Fig. 2f. Because harmonic mode 3 is excluded, the
two-mode pre-buckling path initially follows the postbuckling path for harmonic mode 2. With further
deformations, deformed shapes of the shell not shown here indicated that re-bifurcation occurs and the pre-
dominant harmonic mode gradually changes from 2, to 1 and then 0 (axisymmetric).

4.3. Cylindrical shell under axial compression

The present method was also applied to a circular cylindrical shell under axial compression which is one
of the many cylindrical shells studied by Yamaki (1984). The shell has geometric properties of R = 405 mm,
thickness z = 1 mm, and length L = 291.18 mm and material properties of elastic modulus E = 5.56 GPa,
and Poisson’s ratio v = 0.3. The Batdorf parameter of the cylinder Z (= L*v/1 — v2/Rt) is 200. In the present
study, both ends of the cylinder were clamped with the top end allowed to move axially so that axial com-
pression could be applied. This differs slightly from that assumed by Yamaki (1984) in his analytical study
in which both ends were restrained against all displacements.

The postbuckling paths for individual harmonic modes are shown in Fig. 3a in which the vertical axis
represents the applied axial stress normalized by the classical buckling stress given by

oy EL (13)
R\/3(1 —v?)
while the horizontal axis is the end shortening of the shell. The disturbance factors are & =10"° (i=
14-18). The buckling loads and characteristic postbuckling loads for various harmonic modes are listed
in Table 1.

The multi-mode postbuckling path for n =1+ 15 + 16 is plotted in Fig. 3b. Here the disturbance factors
are: &;s = &6 =10 The characteristic postbuckling load of this path is 0.3756;, which is between the
postbuckling loads of modes 15 and 16 (Table 1). Fig. 3c and d show the deformed circumferences at a
height of 0.6 L (L = total height of the cylinder) at two postbuckling states (Points A and B in Fig. 3b).
The number of circumferential waves is seen to change from 16 to 15. Since the buckling loads of harmonic
modes 15 and 16 are close to each other, this mode change is not very clear and involves interaction be-
tween the two modes.

The postbuckling path for n =16 + 17 is plotted in Fig. 3e, which was obtained with &= &7 = 1074,
This curve is the same as the postbuckling path of harmonic mode 16. The deformed circumferences at a
height of 0.6 L of the shell at two postbuckling states (Points A and B in Fig. 3e) are shown in Fig. 3f and g.
No mode change is seen during the postbuckling process. That is, harmonic mode 17 has no influence on



J.G. Teng, T. Hong | International Journal of Solids and Structures 43 (2006) 551-568 561

10 : . : : . 10 . : . : .

b [ Points A and B areindicated on
thecurvefor n=1+15+ 16

o
)
o
©
T

=3

o
o
)

T

o

»
o
IS

B n=1+15+16

Dimensionless axial compression o,/ 6,
Dimensionless axial compression 6,/ 6,

0.2 0.2

00 . I . I . 00 L . I .
00 02 04 06 00 02 04 06

(@ End shortening Al /tat 6= 0 (b) End shortening Al /tat 6 =0

— — - Initia shape - Initial shape
Deformed shape Deformed shape
(c) Scale of displacements = 50 (d) Scale of displacements =10
10 ‘ ‘

[ PointA and B areindicated on A ]

© 08 the path of n =16 + 17 _

S
5 L ]

g 0.6 —

8 n=17
= ]
®

8 04 B |
= n=16
s L ]

5
£ o2 ——— n=16adn=17 —|

L =+ n=16+17
0.0 | |
0.0 0.2 0.4 0.6
(e) End shortening Al/t at 6 = 0

Fig. 3. Cylindrical shell under axial compression. (a) Postbuckling paths of various harmonic modes. (b) Effect of mode switching and
interaction. (c¢) Deformed circumference at 0.6L at point A in (b). (d) Deformed circumference at 0.6L at point B in (b).
(e) Postbuckling paths of n=16, n=17, n=16+17. (f) Deformed circumference at 0.6L at point A in (e). (g) Deformed
circumference at 0.6L at point B in (e).
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Fig. 3 (continued)
Table 1
Buckling loads and characteristic postbuckling loads of a cylindrical shell under axial compression
Harmonic mode n Bifurcation analysis n, = 16 14 15 16 17 18
Buckling load (ov/04) 0.9110 0.9222 0.9124 0.9089 0.9176 0.9176
Postbuckling load (a,/0¢1) - 0.3000 0.3493 0.4010 0.4540 0.5070

the postbuckling path of harmonic mode 16. This supports the observation that re-bifurcation is associated
with reductions in the number of circumferential waves in the postbuckling process of shells.

In Fig. 3a, b and e, a reversal in the elongation of the postbuckling curve is seen for some of the post-
buckling paths. The deformations of the shell near these reversals were examined and it was found these
reversals were due to a deformation mode change in the meridional direction.

4.4. Cylindrical shell under uniform external pressure

A cylindrical shell under uniform external pressure previously analyzed by Bulenda (1993) was next
investigated. The cylinder is restrained against both radial and meridional displacements at the two ends.
It is further restrained against axial displacements at the mid-height so that rigid body translations in the
axial direction are excluded. The material and geometric properties of the shell are: elastic modulus
E =3 x 10* KN/m?, Poisson’s ratio v =0, radius R = 100 m, height H = 140 m, and thickness # =2 m.

Fig. 4a shows the present results in comparison with those from Bulenda (1993) and Eckstein (1983) for
the postbuckling path considering the critical mode and the next higher mode from nonlinear coupling. It
can be seen that the present method produces identical results which are much closer to those of Eckstein
(1983) than those of Bulenda (1993). ¢ = 10~ was used in this problem. The postbuckling paths for various
harmonic modes found using the present method (&5 = &g = &7 = 10*6) are plotted in Fig. 4b. For this shell,
the buckling loads for buckling modes 5 and 7 are significantly different from the critical buckling load p.,
for n., = 6.

The multi-mode postbuckling path for n =1+ 5+ 6 is compared to postbuckling paths for harmonic
modes 5, 6 and 7 in Fig. 4c. The smooth transition seen near the limit point in these curves is due to the
use of slightly larger disturbance factors (és = &g = &7 = 10*3). When a value equal to or less than 1074
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Fig. 4. Cylindrical shell under uniform external pressure. (a) Postbuckling paths of n =6+ 12. (b) Postbuckling paths of various
harmonic modes. (c) Effect of mode switching and interaction. (d) Deformed circumference at mid-height at point A in (c). (e)
Deformed circumference at mid-height at point B in (c). (f) Deformed circumference at mid-height at point C in (c). (g) Deformed
shape at point A in (c). (h) Deformed shape at point C in (c).

was set for the disturbance factors &5 and &g, the multi-mode postbuckling path could be followed well only
in the early postbuckling stage. In the advanced postbuckling stage, it was very difficult to achieve conver-
gence. The larger disturbance factors have little effect on the predicted postbuckling path except for a small
effect near the bifurcation point with the peak load for harmonic mode 6 being 98.7% of the bifurcation
load (Table 2). The characteristic postbuckling loads for various harmonic modes are also given in Table
2. Tt shows that the characteristic postbuckling load obtained for n =1+ 5+ 6 is between those of har-
monic modes 5 and 6. The difference between these loads is significant. Due to mode interaction, the post-
buckling path for n =1+ 5+ 6 follows that of harmonic mode 6 only in the initial stage of postbuckling
deformation, but then deviates from it; the multi-mode curve does not follow the postbuckling path for har-
monic mode 5 at all, despite that the latter lies below the former.

The deformed circumference at the mid-height of the postbuckled cylindrical shell is plotted for three
deformation states (Points A, B and C in Fig. 4c) in Fig. 4d-f. These plots show clearly the changes in
the number of circumferential waves due to mode switching. Three-dimensional plots of the shell at two
postbuckling states (Points A and C in Fig. 4c) are given in Fig. 4g and h.
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Fig. 4 (continued)

Table 2

Buckling loads and characteristic postbuckling loads of a cylindrical shell under external pressure

Harmonic mode n Bifurcation analysis ne, = 6 5 5 6 6 7 1+5+6
& - 107¢ 1073 107° 1073 107° 1073
Buckling load p, (KN/m?) 1.1829 1.4038  1.3805  1.1822 11674 12918  1.1674

Postbuckling load p, (KN/m?) - 0.6175  0.6169 09153  0.9145 1.1905  0.7919
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4.5. Cylindrical shell under a radial ring load at mid-height

A cylindrical shell subject to a radial ring load is considered here. The shell has geometrical properties of
length L = 1500 mm, radius R = 500 mm, and thickness # = 1 mm, and material properties of elastic mod-
ulus £ =200 GPa and Poisson’s ratio v = 0.3. Both two ends are simply supported, with only meridional
rotations permitted. A reference load ¢, = 7.56 N/mm was used.

First, the postbuckling paths for harmonic modes 13, 14, 15, 16 and 17 were found (Fig. 5a). It can be
seen that the buckling loads for these modes are close to each other (Table 3). Those for buckling modes 14
and 15 are almost identical. By contrast, the characteristic postbuckling loads for the different modes are
not so close to each other.

The postbuckling curve for harmonic modes 1 + 13 + 14 is plotted in Fig. 5b. Larger disturbance factors
were found to be necessary in order to trace the advanced portion of this mutli-mode postbuckling path, so
&3 = &4 = 1072 were used. As a result, the peak of the multi-mode curve shows a smooth transition with a

1.2 T T T T T 12 T T T T T T T
g g
= =
= 39
gos Rt -
=] en
g |
g £
Z 04 £ 04 -
g g
2 D

0.0 L 1 . | | 00 . L : 1 : |

0 2 4 6 0 2 4 6 8
(a) Dimensionless radial displacement at 8 = 0 of mid-height u/t (b) Dimensionless radial displacement at 8 = O of mid-height u/t

(c) Scale of displacements = 60

Fig. 5. Cylindrical shell under a radial ring load. (a) Postbuckling paths of various harmonic modes. (b) Effect of mode switching and
interaction. (¢) Deformed shape at point A in (b).
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Table 3

Buckling loads and characteristic postbuckling loads of a cylindrical shell under a radial ring load at mid-height

Harmonic mode n 13 14 15 16 17 13 14 1+13+14
& 10°° 10°° 10° 10°° 10°° 103 10°? 10°?
Buckling load ¢y/g; 0.9155 0.9099 0.9094 0.9140 0.9239 0.9060 0.9007 0.8976
Postbuckling load ¢,/¢, 0.5392 0.5988 0.6562 0.7122 0.7669 0.5372 0.5988 0.5752

Note: critical bifurcation mode n., = 15, bifurcation load ¢/q, = 0.9118.

peak load being 1.56% smaller than the bifurcation load for the critical mode. (Table 3). The multi-mode
path does not follow either the path for mode 13 nor the path for mode 14, and is above the paths for both
modes 13 and 14 over a large range. The characteristic postbuckling load of this multi-mode path is less
than that for n = 14, but larger than that for » = 13 (Table 3). A three-dimensional view at the postbuckling
state A is shown in Fig. 5c.

5. Conclusions

Based on the coupled-harmonics finite element formulation for the nonlinear analysis of elastic shells of
revolution subject to non-symmetric loads (Hong and Teng, 2002), a numerical method for the advanced
postbuckling analysis of perfect thin shells of revolution subject to axisymmetric loads has been presented.
In this method, by specifying small load-disturbances in appropriate harmonic modes, complex postbuck-
ling paths with mode switching and interaction can be predicted.

The present method was applied to several typical numerical examples to demonstrate its capability.
Numerical results show that the small load disturbances have practically no influence on the predicted re-
sponse in most cases as these disturbances can be made very small. In a small number of cases when mode
interaction is considered, the load disturbances may need to be slightly larger, which can then have a small
influence on the accuracy of the predicted buckling load and the postbuckling path in its vicinity.

In general, the present results are in close agreement with the limited existing results. The existing belief
that re-bifurcation of shell structures leads to reductions in the number of circumferential waves is con-
firmed by the present numerical results. A significant conclusion from the present numerical study is that
mode switching does not occur suddenly. Instead, there is strong interaction between different modes and
the transition of deformation mode from one to another is gradual. Consequently, the conventional ap-
proach (e.g. Esslinger and Geier, 1975; Schmidt et al., 1998) of finding the postbuckling path of a shell
as the lower festoon curve of postbuckling paths of individual harmonic modes is not valid and is at best
a convenient approximation.
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